Исследование упругого рассеяния ионов кисларода на ядрах 12С при энергиях вблизи кулоновского барьера

Мейрамбайкызы Айгул

Магистрант МКТУ имени Х. А. Яссави, Казахстан, г. Туркестан E-mail: <u>aigul.90.2014@mail.ru</u>

Аннотация: предложенные в статье расматриваеться исследование упругого рассеяния ионов кисларода на ядрах ¹²С при энергиях вблизи кулоновского барьера. Используя экспериментальные данные из различных литературных источников, проведен анализ упругого рассеяния ионов кислорода на ядрах углерода в рамках стандартной оптической модели в широком диапазоне энергий налетающих частиц и определены глобальные параметры оптических потенциалов взаимодействия для исследуемой ядерной системы.

Изучение упругого рассеяния тяжелых ионов на легких ядрах при энергиях, близких к Кулоновскому барьеру, представляет интерес, как с точки зрения установления надежных значений параметров потенциала взаимодействия тяжелых ионов при низких энергиях, так и изучения механизма кластерной передачи, который проявляется при больших углах и существенно увеличивает экспериментальные дифференциальные сечения упругого рассеяния в этом диапазоне углов. Это подтвердили измерения процесса ¹²C(¹⁶O,¹⁶O)¹²C, проведенные на ДЦ-60 при энергиях Е₁₆₀ = 1,75 МэВ/нуклон и 1,5 МэВ/нуклон. Наличие вклада отличного от чисто потенциального механизма – механизма передачи кластера в формирование сечений упругого рассеяния в задней полусфере налагает дополнительные условия при подборе физически обоснованных параметров потенциалов ядро-ядерного взаимодействия для тяжелых ионов. В связи с этим поиск глобальных параметров оптического потенциала упругого взаимодействия ядер проводился только в области передних углов, отвечающих чисто упругому рассеянию. Кроме того, анализ экспериментальных данных по упругому рассеянию проводился в широком интервале энергий от 20 до 260 МэВ в рамках оптической модели. Экспериментальные данные были взяты из работ [1, с 37]. Авторы работы пытаются получить лучшее описание рассеяния на задних углах введением в мнимую часть потенциала орбитальную зависимость. В другой работе с использованием в качестве начальных параметров данные из работы [1] в рамках программы SPIVAL достигли лучшего качества подгонок для выбранного диапазона экспериментальных данных.

Для исключения влияния резкого подъема сечений под обратными углами на значения устанавливаемых параметров оптических потенциалов, подгонка теоретических сечений к экспериментальным по оптических моделье проводилась только для угловых распределений ограниченных передней полусферой. При этом для корректного установления энергетических зависимостей глубин оптического потенциала были зафиксированы радиусы реальных и мнимых частей потенциала r_0 = 0.76 фм и r_w = 1.261 фм (R_i = r_i ($A_1^{1/3}$ + $A_2^{1/3}$)), соответственно. Приведенный кулоновский радиус - r_0 = 0.95 фм. Полученные в таком подходе оптимальные параметры оптическиз потенциала для широкого интервала перечисленных выше энергий представлены в таблице 1[2,17].

Установленные глобальные параметры оптического потенцтала для системы ¹⁶O + ¹²C корректно описывает экспреиментальные данные по упругому рассеянию в широком диапазоне углов энергии интервале энергии 94-260 МэВ. Необходимо отметить при низких энергиях наблюдаеся увеличивающиеся расхождения теории с экспериментом при углах свыше 100⁰-120⁰ градусов.

Таблица 1

E	V ₀	<u>r</u> r	a _r	W ₀	Ľĸ	a _w	J_{V}	$\mathbf{J}_{\mathbf{W}}$
(МэВ)	(МэВ)	(Фм)	(Фм)	(МэВ)	(Фм)	(Фм)	МэВ Фм	МэВ Фм
							3	3
260	168.29	0.76	0,801	24.863	1.261	0.4542	271.80	101.05
230	195.6	0.76	0,767	19.15	1.261	0.459	291.98	95.40
200	213.218	0.76	0,857	17.138	1.261	0.554	293.66	85.50
170	280.69	0.76	1,098	16.4087	1.261	1.121	311.65	82.59
132	291.91	0.76	1,093	15.38	1.261	1.26	310.86	66.02
124	293.97	0.76	0,731	16.39	1.261	0.623	456.5	70.33
115	296.31	0.76	0,722	14.77	1.261	0.4026	492.0	80.75
100	321.3	0.76	0,621	12.88	1.261	0.534	552.25	67.56
94	330.9	0.76	0,641	10.88	1.261	0.4663	537.5	63.43

Оптимальные параметры оптических потенциалов для системы ¹⁶O +¹²C полученные с использованием программы SPIVAL

Была исследована энергетическая зависимость значений V и W для системы ¹²C (¹⁶O, ¹⁶O) ¹²C (рис.1.), которая показала, что с уменьшением энергии значения глубин реальной части возрастают и могут быть аппроксимированы формулой: V = 417.121-0,9556E (MэB), а мнимой уменьшаются: W = 8,6791+0,0459E (MэB). Эти зависимости были установлены для фиксированной геометрии потенциалов, значения которых приведены выше по тексту.

(a)-

Взаимосвязь между глубиной действительного потенциала и энергией, (b)-глубиной мнимого потенциала и энергией для системы ¹⁶O+¹²C.

Рис. 1. Зависимость глубин оптического потенциала от энергии.

Экспериментальные данные по дифференциальным поперечным сечениям упругого рассеяния ионов кислорода на ядрах ¹²С измеренные при энергиях 28, 24, 20 МэВ в диапазоне

углов 12°-72° в л.с.к. не удается воспроизвести с использованием параметров оптических потенциала из глобальной систематики установленной выше. Как было замечено ранее, с уменьшением энергии возрастает разногласие между экспериментальными и расчетными данными. Это расхождение удалось избежать с использованием более мелкой глубины для действительной части потенциала из другого дискретного семейства при той же величине объемного потенциала. Постоянство величины J_V достигается за счет учета корреляции между глубиной и радиусом потенциала. Уменьшение глубины действительной части потенциала. Компенсируется увеличением значений радиусов. Полученные в таком подходе результаты описания экспериментальных данных показаны на рисунках 2, 3, 4.

Установленные по такой процедуре оптимальные параметры оптических потенциала при низких энергиях включены в таблицу 2.

Как видно из рисунков, теоретические расчеты сечений упругого рассеяния ¹²C(¹⁶O,¹⁶O)¹²C по оптической модели полностью воспроизводят угловые распределения в передней полусфере, и резко расходятся в обратной полусфере, поскольку значения расчетных сечений экспоненциально спадает с ростом угла рассеяния, что характерно механизму потенциального рассеяния. Следовательно, для воспроизводства угловых распределений упругого рассеяния под обратными углами наряду с потенциальным механизмом необходимо учитывать и вклады других механизмов, в частности механизма обмена кластерами.

Символы – экспериментальные дифференциальные сечения упругого рассеяния, сплошная линия – результаты расчета по оптических моделью выполненные с использованием программы SPIVAL.

Рис. 2. Угловое распределение упругого рассеяния ионов ¹⁶О на ядрах ¹²С при энергии 28 МэВ.

Символы – экспериментальные дифференциальные сечения упругого рассеяния, сплошная линия – результаты расчета по оптических моделью выполненные с использованием программы SPIVAL.

Рис. 3. Угловое распределение упругого рассеяния ионов $^{16}{\rm O}$ на ядрах $^{12}{\rm C}$ при энергии 24 МэВ.

Символы – экспериментальные дифференциальные сечения упругого рассеяния, сплошная линия – результаты расчета по оптических моделью выполненные с использованием программы SPIVAL

Рис. 4. Угловое распределение упругого рассеяния ионов ¹⁶О на ядрах ¹²С при энергии 20 МэВ.

Таблица 2

Оптимальные параметры оптических потенциалов для системы ¹⁶O + ¹²C полученные с использованием программы SPIVAL.

Ядерная	Elab	V ₀	<u>r</u> r	a _r	W ₀	<u>r</u> a	aw	.r.c	$\mathbf{J}_{\mathbf{V}}$	$\mathbf{J}_{\mathbf{W}}$
система	(МэВ)	(МэВ)	(Фм)	(Фм)	(МэВ)	(Фм)	(Фм)	(Фм)	МэВ	МэВ
									ΦM^3	Фм ³
¹⁶ O+ ¹² C	28	98.28	1.18*	0.458	11.94	1.25*	0.378	1.25*	417.07	58.88
¹⁶ O+ ¹² C	24	92.91	1.18*	0.453	16.87	1.25*	0.294	1.25*	393.76	81.87
¹⁶ O+ ¹² C	20	107.06	1.18*	0.439	39.0	1.25*	0.155	1.25*	452.06	186.2

В полученных экспериментальных сечениях не наблюдаются ярко выраженные осцилляции и подьемы. Это вероятно связано с тем, что в исследуемых системах сечение формирует чисто потенциальное и отсутсвует вклад каких-либо обменных процессов.

Полученные потенциалы можно будут использовать для модельных расчетов выходов ядерных реакций необходимых для астрофизических приложений.

Литература:

1. A. A. Ogloblin, Yu. A. Glukhov, W. H. Trzaska, New measurement of the refractive, elastic ¹⁶O+¹²C scattering at 132, 170, 200, 230, and 260 MeV incident energies // PHYSICAL REVIEW C, VOLUME 62, 044601.

2. Гриднев К. А., Родионова Е. Е., Фадеев С. Н. Анализ рассеяния ¹⁶O+¹²C и ¹⁶O+¹⁶O в широком диапазоне энергий // Вестник СПбГУ, 2007, сер. 4, вып. 4, с. 49.