Расчёт однофазного трансформатора

Карпухин И. В.

В статье исследуется однофазный трансформатор малой мощности. Приведен расчет основных его параметров

Ключевые слова: трансформатор, однофазный трансформатор малой мощности, ТММ.

Расчет однофазных трансформаторов малой мощности ведется, как правило, на допустимое превышение температуры. При этом не исключаются ограничения по напряжению короткого замыкания и току холостого хода, исходя из условий работы.

Исходными данными для расчёта трансформатора являются: назначение, условия работы и требуемый срок службы; напряжение и частота питающей сети, электрическая схема трансформатора; действующие напряжения вторичных обмоток; допустимые напряжения короткого замыкания или наличие тока холостого хода (при наличии ограничений по этим параметрам).

Наиболее простой и экономичной считается электрическая схема обмоток, указанная на рис.

لسيا

Рис. 1. Электрическая схема обмоток.

1) Расчёт габаритной мощности. Выбор типоразмера магнитопровода.

По таблице

Значення коэффициентов приведения тока $k_{\rm up1}$, $k_{\rm np2}$, коэффициента распределения мощности $k_{\rm p}$ и расчетные соотношен для определения габаритной мощности в зависимости от схемного выполнения обмоток ТММ

Схема выполнения обмоток	k _{np1}	k _{np2}	A _D	Габаритная мощность Р		
jumy	1	1	1	$\frac{\Sigma P_2}{2\psi} (1+\psi)$		
يسسيا	1	0,707	0	$\frac{\Sigma P_2}{2\psi} \left(\sqrt{2} + 1\right)$		
ؠۺۺؠ	1	0,707	0 <k<sub>p<1</k<sub>	$\frac{\Sigma P_2}{2\psi} \times \times [1+\psi(\sqrt{2}-0.41)]$		
يسئس	0,707	0,707	0	$\frac{\Sigma P_2}{\sqrt{2}} \left(1 + \frac{1}{\psi}\right)$		
يسسم	0,707	1	1	$\frac{\Sigma P_2}{2\psi}(\sqrt{2}+\psi)$		
لسلسا	0,707	0,707	0 <k<sub>p<1</k<sub>	$\frac{\Sigma P_2}{2} \left(\frac{1}{\psi k_{\text{mp1}}} + \frac{1-k_{\text{p}}}{k_{\text{mp2}}} + k_{\text{p}} \right)$		

$$P_{\Gamma} = P_{2} * (\phi + 1) / 2\phi.$$

 $P_{2} = U_{2} * I_{2}.$

КПД выбирается по графику на рис. З в зависимости от суммарной выходной мощности:

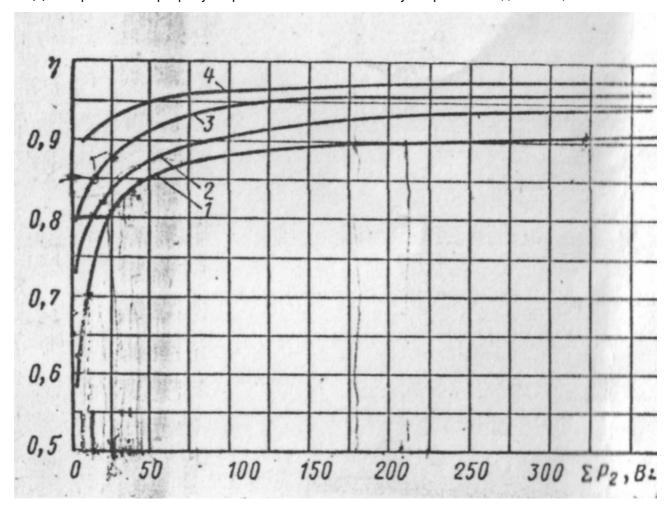


Рис. 3. Зависимости КПД трансформатора от суммарной выходной мощности.

Выбираем типоразмер магнитопровода ШЛ по таблице

Расчетные данные ряда трансформаторов броневого типа ($f = 50~\Gamma \text{ц};~\Delta T_{\text{к.cp}} = 55^{\circ} \text{C};~\text{сталь}~3412~(3320)~-$ толщина 0,35 г 3421 (3310) — толщина 0,2 мм)

Типоразмер магинтопровода, $u = a \times b$	Pr. B.A	B _m . T	₩ _е , виток/В	и _к , %	f. A/1
ШЛ12×12,5	2,0	1,5	22,7	12	1,5
ШЛ12×16	4,0	1,5	17,7	12	1,7
ШЛ12×20	6,0	1,5	14,2	12	2,0
ШЛ12×25	8,0	1,5	11,4	12	2,2
ШЛ16×16	13	1,6	12,4	12	2,0
ШЛ16×20	20	1,6	9,9	12	2,2
ШЛ16×25	28	1,6	7,9	12	2,5
ШЛ16×32	38	1,6	6,2	12	3,0
ШЛ20×20	45	1,6	7,85	11,5	2,5
ШЛ20×25	60	1,6	6,26	10,5	2,7
ШЛ20×32	75	1,6	4,9	9,0	2,7
ШЛ20×40	98	1,6	3,9	8,0	2,6
ШЛ25×25	125	1,6	5,0	9,0	2,4
ШЛ25×32	150	1,6	3,9	7,5	2,4
ШЛ25×40	190	1,6	3,15	6,5	2,3
ШЛ25×50	230	1,6	2,5	5,5	2,2
ШЛ32×32	280	1,6	3,0	7,0	2,3
ШЛ32×40	350	1,6	2,42	5,5	2,2
ШЛ32×50	440	1,6	1,95	4,5	2,1
ШЛ32×64	540	1,6	1,5	4,0	2,0
ШЛ40×40	640	1,6	1,95	4,5	2,0
ШЛ40×50	770	1,6	1,55	4,0	1,1
ШЛ40×64	920	1,6	1,20	3,0	1,1
ШЛ40×80	1100	1,6	0,97	3,0	1,1

2) Расчет числа витков первичной и вторичной обмоток

$$W_1 = W_0 U_1 (1 - U_k/2).$$

$$W_2 = W_0 U_2 (1 + U_k/2).$$

3) Сечение и диаметр і-й обмотки определяют по формулам

$$q_i = I_i / j;$$
 $d_i = 1.13^{i\sqrt{q_i}}$

и выбираются из таблицы

Основные данные обмоточых проводов круглого сечения

1	1	1
	Диаметр провода с изоляцией. мм	
Communication		CORPOTUS RANGO

T S W	Сечение						постояниому
Диаме провод меди,	провода, мм²	пэв-2	пэтв	ПНЭТ - имид	пск, псдк	пэлшо	току, Ом/м
одон одо одо одо одо одо одо одо одо одо	О,00196 0,00283 0,00385 0,00503 0,00636 0,00785 0,00950 0,01131 0,01327 0,01539 0,01767 0,02011 0,02270 0,02545 0,02835 0,03142 0,03464 0,04155 0,04909 0,05726 0,06605 0,07548 0,08553 0,09621 0,1134 0,1320 0,1521 0,1735 0,1886 0,2043 0,2043 0,2043 0,2060 0,2376 0,2552 0,2734 0,3019 0,3217	0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,17 0,20 0,21 0,22 0,23 0,24 0,25 0,30 0,34 0,36 0,36 0,41 0,47 0,50 0,60 0,62 0,62 0,62 0,63 0,64 0,66 0,69 0,72	0,09 0,10 0,12 0,13 0,14 0,15 0,16 0,17 0,20 0,21 0,22 0,24 0,25 0,30 0,34 0,36 0,41 0,47 0,50 0,62 0,64 0,66 0,69 0,72	нмнд — — — — — — — — — — — — — — — — — — —	ПСДК — — — — — — — — — — — — — — — — — — —	0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,30 0,31 0,33 0,35 0,39 0,41 0,43 0,45 0,50 0,66 0,66 0,68 0,70 0,75 0,75 0,75	9,169 6,367 4,677 3,580 2,829 2,291 1,895 1,591 1,356 1,169 1,018 0,895 0,793 0,707 0,635 0,572 0,520 0,433 0,366 0,315 0,296 0,239 0,210 0,187 0,152 0,130 0,113 0,0993 0,013 0,0914 0,0840 0,0725 0,0630 0,0571 0,0538
0,67 0,69 0,72 0,74 0,77 0,80 0,83	0,3526 0,3739 0,4072 0,4301 0,4657 0,5027 0,5411	0,75 0,77 0,80 0,83 0,86 0,89 0,92	0,75 0,77 0,80 0,83 0,86 0,89 0,92	0,72 0,74 0,77 0,80 0,83 0,86 0,89	0,93 0,95 0,99 1,01 1,04 1,07 1,10	0,80 0,82 0,87 0,89 0,92 0,35 0,98	0,0488 0,0461 0,0423 0,0400 0,0370 0,0342 0,0318

Список используемых источников

- 1. С.С. Букреев и др.: Источники вторичного электропитания. Под ред. Ю.И. Конева. М.:Радио и связь, 1983
- 2. Проэктирование стабилизированных источников электропитания радиоэлектронной аппаратуры / Л. А. Краус, Г. В. Гейман, М. М. Лапиров-Скобло, В. И. Тихонов М.: Энергия, 1980.
- 3. Справочник по источникам электропитания радиоэлектронной аппаратуры.:Под ред. Г.С.Найвильта. – М.:Радио и связь, 1986