Тонкопленочные сегнетоэлектрики, полученные из растворов экстрактов

Слизкова Алена Сергеевна, Немировец Александра Игоревна

Студенты Института инженерной физики и радиоэлектроники СФУ, Россия, Красноярск. E-mail:Alenka771@yandex.ru

Сегнетоэлектрические тонкие плёнки с высокой диэлектрической проницаемостью привлекли большое внимание за последние несколько десятилетий из-за их возможного применения в конденсаторах динамических запоминающих устройств с произвольным доступом (DRAM), энергонезависимых запоминающих устройств, оптико-электронных приборов и инфракрасных датчиках (1-4). В последние годы вложение пассивных компонентов в печатную плату (РСВ) или основание пакета становится ключевой технологией для системы в пакете (SiP). Чтобы произвести тонкоплёночные конденсаторы, сегнетоэлектрические включенные материалы могут использоваться в качестве диэлектрического слоя. Сегнетоэлектрические керамические материалы с постоянным дипольным моментом, такие как BaTiO₃ (титанат бария). BaSrTiO₃ (бария титанат стронция), и PbZrTiO₃ (цирконат-титанат свинца) с диэлектрической постоянной в тысячах используются в качестве диэлектрических материалов.

Большая востребованность сегнетоэлектрических тонкопленочных материалов сталкивается с проблемой их синтеза, который требует использования высокочистых исходных веществ и наукоёмкого высокотемпературного синтеза. Пленки сегнетоэлектриков толщиной 70-100 нм выращивали методами реактивной молекулярно-лучевой эпитаксии (МЛЭ) на кремниевых подложках [1], радиочастотным магнетронным распылением [2], ВЧ-катодным распылением [3], методом лазерного осаждения на подложках LiF, Au (111) (Nd-ИАТ лазер, 25 Дж/см²) [4] при температурах подложки 490-510 °C в атм. О2. При этом для формирования паров оксидов металлов TiO2, ВаО, SrO требуются очень высокие температуры нагрева мишени (1100–1500 °C).

Использование растворных методов синтеза позволяет значительно снизить температурные параметры процессов синтеза сложных оксидов. Так, сегнетоэлектрические пленки получали гидротермальным методом [5] и золь-гель методом [6], которые не обеспечивают должной чистоты получаемых продуктов.

В нашей работе пленки сегнетоэлектриков получены экстракционно-пиролитическим методом [7], в котором органические прекурсоры формируются в процессе экстракции металлов из водных растворов их неорганических солей, при этом примесные катионы остаются в водной фазе. Поэтому разрабатываемый метод обеспечивает и снижение температуры синтеза и чистоту получаемых сложных оксидов.

Тонкие пленки BaTiO₃ были получены нанесением раствора смеси экстрактов — карбокислатов бария и титана на кварцевые подложки и пиролизом при температуре 500 °C с последующим отжигом при различных температурах. Полученные материалы были исследованы методом РФА на приборе ДРОН 4 (рис. 1)

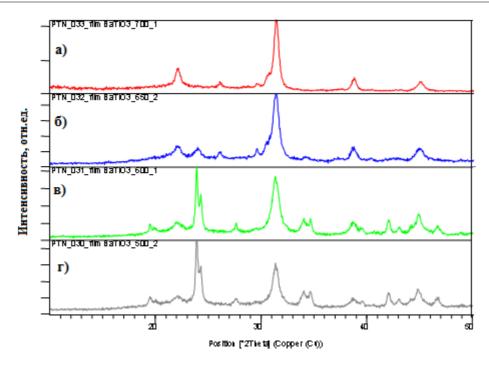


Рис. 1. РФА тонких пленок, полученных из растворов экстрактов Ва и Ті.

Как показали результаты рентгенофазового анализа, в процессе отжига пленки в течение 10 минут при 500 и 600 °C происходит образование около 40–50 % фазы сегнетоэлектрика $BaTiO_3$ (31,5 20) наряду с непрореагировавшими оксидами TiO_2 и BaO (24; 34; 34,5 20). Отжиг при температуре 650 °C в течение 10 минут приводит к более полному формированию фазы $BaTiO_3$, тогда как при 700 °C получается чистая фаза сегнетоэлектрика. Увеличение времени отжига до 1 часа позволит снизить температуру синтеза фазы титаната бария до 650 °C.

По полуширине рентгеновского пика с использованием уравнения Шеррера $\Delta 2\theta = m\lambda/D_{hkl}$ Cos θ (m=1, λ =1,5418 нм) определен размер зерен в полученной пленке BaTiO₃, который составил 20 нм.

Список литературы

- 1. Theis C.D., Yeh J. Absorbtion controlled growing of PbTiO₃ by reactive molecular beam epitaxy // Thin Solid Films, 1998. V. 325. № 1. P. 107–114.
- 2. Velu G., Remiens D. Electrical properties of sputtered PZT films on stabilized platinum electrode // J. Eur. Ceram. Soc. 1999. V. 19. № 11. P. 2005–2013.
- Tunabajlu B. Kinetics of phase transition in film Pb-Ga- Zr-TiO₃ // J. Mater Sci Lett. 1998. V. 17. № 17. P. 1445–1447.
- 4. Martin Maria Jose. Influence of deposition parameters and substrate on the quality of pulsed laser deposited Pb_{1-x}Ca_xTiO₃ ferroelectric films // J. Amer. Ceram Soc. 1998. V. 81. № 10. P. 2542–2548.
- 5. Hamedi L.H. Hidrothermal growing of thin films Pb(ZrTi)O₃ // Thin Solid Films, 1999. V. 352, № 1–2, P. 66–72.
- Ning Zhao, Lixi Wan, Liqiang Cao, Daquan Yu, Shuhui Yu, Rong Sun Dielectric enhancement of BaTiO₃ /BaSrTiO₃ / SrTiO₃ multilayer thin films deposited on Pt/Ti/SiO₂/Si substrates by sol-gel method // Materials Letters 65 (2011) 3574–3576
- 7. Холькин А.И., Патрушева Т.Н. Экстракционно-пиролитический метод получения оксидных

функциональных материалов. М.: КомКнига. 2006. 276 с.	